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Eighty years after its experimental discovery, a description of induced nuclear fission based solely
on the interactions between neutrons and protons and quantum many-body methods still poses
formidable challenges. The goal of this paper is to contribute to the development of a predictive
microscopic framework for the accurate calculation of static properties of fission fragments for hot
fission and thermal or slow neutrons. To this end, we focus on the 239Pu(n,f) reaction and employ
nuclear density functional theory with Skyrme energy densities. Potential energy surfaces are com-
puted at the Hartree-Fock-Bogoliubov approximation with up to five collective variables. We find
that the triaxial degree of freedom plays an important role, both near the fission barrier and at
scission. The impact of the parameterization of the Skyrme energy density and the role of pairing
correlations on deformation properties from the ground-state up to scission are also quantified. We
introduce a general template for the quantitative description of fission fragment properties. It is
based on the careful analysis of scission configurations, using both advanced topological methods
and recently proposed quantum many-body techniques. We conclude that an accurate prediction of
fission fragment properties at low incident neutron energies, although technologically demanding,
should be within the reach of current nuclear density functional theory.

PACS numbers: 21.60.Jz, 24.75.+i, 25.85.Ec, 27.90.+b

I. INTRODUCTION

The accurate description of neutron-induced fission is
particularly important to address present challenges in
the areas of energy production, nuclear waste disposal
or national security applications. Many of these appli-
cations require a detailed knowledge of fission fragment
properties such as their charge, mass, and relative yields,
their total kinetic energy, their total excitation energy,
etc. The fission spectrum, i.e. the number and char-
acteristics of both pre- and post-scission neutrons and
gammas, often needs to be known within a few percent
accuracy. In many fissile or fissionable nuclei of interest,
experimental measurements are not possible and theoret-
ical simulations of the fission process are therefore nec-
essary.

The central idea in the theoretical description of in-
duced fission remains that of Bohr and Wheeler [1]: fis-
sion is modeled as a two-step process where the incident
neutron first fuses with the target to form a compound
nucleus (in an excited state), which then breaks into two
or more fragments. These fragments will themselves de-
cay to their respective ground-state. Based on this hy-
pothesis, powerful toolkits have been developed over the
years to reproduce fission data: Monte-Carlo schemes are
used to simulate the deexcitation of fission fragments af-
ter scission [2–8]; reaction models focus on explaining
the characteristic features of the fission spectrum such
as fission isomers, collective structures, resonances, etc.
[9]; nuclear structure models provide basic information
on the fission fragments and the fission process itself,
such as fission barrier heights, charge, mass, and energy

distributions. Many results have been obtained using
the macroscopic-microscopic approach to nuclear struc-
ture [10, 11] and its dynamical extensions using either
the general Langevin equations [12, 13] or their restric-
tion to Brownian motion [14, 15]. This approach is com-
plemented by various scission point models, the goal of
which is to simulate the actual break-up of the nucleus
at large elongations [16].

This semi-phenomenological framework has been very
successful in explaining and reproducing numerous fea-
tures of the fission process; see, e.g. Refs. [14, 15, 17–
20] for recent applications. Nevertheless, a truly pre-
dictive theory of fission should ultimately be based on
a detailed account of the nuclear forces between pro-
tons and neutrons combined with the use of standard
many-body methods of quantum physics. In principle,
several approaches can meet these requirements. For
example, functional integral methods are fully quan-
tum mechanical approaches that include quantum dis-
sipation and fluctuations [21, 22]. Their implementa-
tion, however, requires computing resources that far ex-
ceed those available to the current generation of super-
computers. On paper, nuclear density functional the-
ory (DFT) represents an excellent compromise between
microscopic content and actual feasibility. In particu-
lar, DFT lends itself particularly well to separating nu-
clear excitations into fast intrinsic and slow collective
excitations [23, 24]. This distinction is especially use-
ful in the context of low-energy nuclear fission, which
has timescales of the order of 10−19 − 10−20 seconds,
i.e. two to three orders of magnitude slower than typ-
ical single-particle excitations. Such a separation is the
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central assumption of the time-dependent generator co-
ordinate method (TDGCM), which provides an effective,
quantum-mechanical method to compute fission frag-
ment yields [25–28].

In spite of its advantages, the proper application of
nuclear DFT to the problem of nuclear fission still re-
quires tremendous computational resources, especially in
the determination of accurate multi-dimensional poten-
tial energy surfaces. In the past, computer limitations
imposed artificial constraints on the theory, such as the
use of small model spaces, schematic interactions, or a re-
duced number of collective variables. It is only recently
that the first systematic, large-scale, and accurate simu-
lations of nuclear fission have been made possible. Most
recent efforts have focused on spontaneous fission in ac-
tinide and superheavy nuclei, and quantities such as bar-
riers and lifetimes; see e.g. Refs. [29–36] for a selection
of recent results. In contrast, there have been compara-
tively fewer publications on the topic of induced fission
[27, 28, 37–39].

This paper is the first in a series of articles focusing
on the microscopic description of induced fission within
the framework of nuclear density functional theory with
Skyrme energy densities. As such, it should be considered
as an intermediate step in the long-term effort to achieve
a predictive theory of fission. The specific goals of this
first paper are (i) to provide a comprehensive mapping
of deformation properties of 240Pu, (ii) to give a detailed
and quantitative analysis of the role of triaxiality in fis-
sion calculations, (iii) to assess the dependence of calcu-
lations on the parametrization of the functional, and (iv)
to establish a template for the calculation of fission frag-
ment properties. In several aspects, this study is both a
continuation and an extension of the general description
of induced fission developed over the years at the Com-
missariat à l’Energie Atomique in France and Lawrence
Livermore National Laboratory in the USA; Cf., for ex-
ample, Refs. [25–28, 37–45].

Section II contains a brief reminder of the nuclear
density functional approach to induced fission, Skyrme
functionals and the practical implementation of DFT.
Section III focuses on the static potential energy sur-
faces in 240Pu, which is the compound nucleus formed
in 239Pu(n,f), and their dependence on the parametriza-
tion of the Skyrme and pairing functionals. Section IV
presents a detailed analysis of the identification of the
scission point based both on topological methods and the
concept of quantum localization, and provides estimates
of fission fragment properties for the most probable fis-
sion.

II. THEORETICAL FRAMEWORK

Our theoretical approach is based on the local density
approximation of the energy density functional (EDF)
theory of nuclear structure. The next few sections review
the basic ingredients of the EDF theory pertaining to the

description of nuclear fission.

A. Density Functional Theory Approach to
Induced Fission

In the context of nuclear fission, the ultimate goal of
nuclear density functional theory is to provide a com-
prehensive and accurate description of both the fission-
ing nucleus (half-lives, fission probability) and the fission
fragments (mass and charge distributions, excitation en-
ergy, yields, etc.) based on the best knowledge of nuclear
forces and quantum many-body techniques.

Density functional theory of nuclei is a mature field
with numerous applications in low-energy nuclear physics
and nuclear astrophysics [24, 46]. The central assumption
of the approach is that atomic nuclei can be described
accurately by an effective energy density H, which is a
functional of the one-body density matrix and the pairing
tensor – since pairing correlations play an essential role in
low-energy nuclear structure. This energy density may or
may not be derived from an effective pseudopotential V̂eff.
In practice, most applications of DFT so far have used
either the Skyrme or Gogny energy density, which are in-
deed derived from an effective two-body pseudopotential,
of zero range for Skyrme and finite range for Gogny. The
coupling constants of the energy density are free parame-
ters to be determined, usually on global observables such
as atomic masses, r.m.s. radii, nuclear matter properties,
etc.; See, e.g., Refs. [47–49] for recent applications.

For the specific case of induced fission, two additional
hypotheses underpin the DFT approach:

1. One can identify a set of collective degrees of
freedom q that drive the dynamics of the fis-
sion process. The most important of these collec-
tive degrees of freedom are related to the nuclear
shape, although additional collective variables re-
lated, e.g., to the pairing channel, could be intro-
duced [29]. The collective degrees of freedom might
be considered as free parameters of the theory, al-
though the variational nature of DFT ensures that
the more collective variables there are, the better
the accuracy is.

2. The transition between the compound nucleus and
fully independent fission fragments can be con-
trolled by the introduction of scission configura-
tions. Without this additional constraint, the short
range of nuclear forces combined with the varia-
tional nature of DFT would always yield fission
fragments in their ground-state configurations, so
that the total energy of the system be minimal.
This is contrary to experimental data, which shows
that fission fragments can be excited.

We note that these two assumptions are reminiscent of
semi-phenomenological approaches to fission, in particu-
lar scission point models using inputs from macroscopic-
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microscopic potential energy surfaces [16]. The main dif-
ference is that DFT is built onto a unique energy density
that simultaneously determines bulk and shell effects, the
collective inertia, and the dynamics of the problem in a
unifying quantum-mechanical framework.

Based on the aforementioned hypotheses, the full DFT
description of induced fission relies on the following multi-
step approach

1. Static properties of the fissioning nucleus are com-
puted as a function of the collective degrees of free-
dom q. These potential energy surfaces are ob-
tained by solving the DFT equations, which most
often take the form of the Hartree-Fock-Bogoliubov
equations with constraints. This step can be viewed
as the construction of an adequate basis made of
those nuclear many-body states that are the most
relevant for the fission process.

2. Scission configurations are then identified on the
potential energy surface, based on some criteria. It
is precisely the purpose of this paper to discuss in
details some of these criteria.

3. Fission fragment properties are obtained by solving
the many-body time-dependent Schrödinger equa-
tion under the general assumptions of DFT, namely
that the ground-state takes the form of a Slater de-
terminant (HF) or, when pairing correlations are
included, of a quasi-particle vacuum (HFB). This
could be done “directly” with the time-dependent
Hartree-Fock (TDHF) theory, and its extension
with pairing, the time-dependent Hartree-Fock-
Bogoliubov (TDHFB) theory [50, 51]. Alterna-
tively, one may use the basis of many-body states
generated in step 1 to formulate a collective, time-
dependent, Schrödinger-like equation: this is the
essence of the time-dependent generator coordinate
method (TDGCM) [40–42]. In practice, only the
TDGCM has been applied to the study of fission
fragment distributions so far [25–28, 45].

One should emphasize that, strictly speaking, the DFT
description of fission requires all of the aforementioned
steps. In particular, while potential energy surfaces can
provide valuable inputs to reaction models, or even be
used to compute pseudo-experimental quantities such as
fission barriers, they are, in reality, only an auxiliary ba-
sis used to compute the fission fragment properties in
the TDGCM. In this paper, the focus is on selected top-
ics pertaining to the static aspects of fission. We leave
the calculation of fission fragment properties, yields, and
distributions to a forthcoming paper.

B. Skyrme Energy Functional

In the local density approximation of the EDF theory,
the energy of the nucleus is given as the integral over
space of the Hamiltonian density H(r), which is itself a

functional of the one-body density matrix ρ and pairing
tensor κ,

E =

∫
d3r H(r) (1)

The Hamiltonian density is built out of a kinetic energy
density term, a potential energy density χt, and a pairing
energy density χ̃t

H[ρ, κ] =
~2

2m
τ(r) +

∑
t=0,1

χt(r) +
∑
t=0,1

χ̃t(r), (2)

where τ(r) is the kinetic energy density, and the index t
refers to the isoscalar (t = 0) or isovector (t = 1) com-
ponent of the potential energy density, see Ref. [52] and
references therein. In this work, the potential energy den-
sity is obtained from the zero-range Skyrme pseudopoten-
tial [53]. We employed three different parametrizations
of the Skyrme EDF: (i) The SkM* parametrization [54]
remains a standard in fission calculations with Skyrme
EDFs, see, e.g. Refs. [30, 31, 35, 36, 55–58] for some re-
cent applications. Since the parameters of the pseudopo-
tential were explicitly adjusted to fission barrier heights,
it is believed to have good deformation properties; (ii)
The UNEDF0 EDF is a recent parametrization of the
Skyrme energy density that gives a very good agreement
with nuclear masses [47] but was shown to have unreal-
istic deformation properties [48, 59]: we use it only to
study the impact of model parameters on fission observ-
ables; (iii) The UNEDF1 EDF was obtained by extending
the optimization protocol of UNEDF0 to include selected
data on fission isomers [48]. It offers an excellent compro-
mise between predictive power (limited amount of data
used in the fit) and overall quality.

In this work, pairing correlations are treated at
the Hartree-Fock-Bogoliubov (HFB) approximation [60].
The pairing energy density χ̃ is a functional of the pair-
ing tensor κ, or equivalently of the pairing density ρ̃ [24].
It is derived from a density-dependent contact pairing
interaction with mixed volume-surface character [61],

V̂pair(r, r
′) = V

(n,p)
0

[
1− 1

2

ρ(r)

ρc

]
δ(r − r′), (3)

with V
(n,p)
0 the pairing strength for neutrons (n) and pro-

tons (p), and ρc = 0.16 fm−3 the saturation density. The
energy cut-off was set at Ecut = 60 MeV. For our calcu-

lations with the SkM* EDF, we adjusted V
(n)
0 and V

(p)
0

locally on the 3-point odd-even mass difference in 240Pu.

This gave V
(n)
0 = −265.25 MeV and V

(p)
0 = −340.06

MeV. In the case of UNEDF0 and UNEDF1, the value of

the pairing strengths V
(n,p)
0 is fixed by the parametriza-

tion; in addition, calculations with these two functionals
are performed using an approximate formulation of the
Lipkin-Nogami prescription [46, 62].

The nuclear shape is characterized by the expectation
value qλµ of the multipole moment operators Q̂λµ on the
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HFB vacuum. We will also employ the expectation value
of the so-called Gaussian neck operator,

Q̂N = e
−
(

z−zN
aN

)2

, (4)

which gives an estimate of the number of particles in the
region centered around the point zN [38, 63, 64]. We
chose the range aN = 1.0 fm. The collective space of
nuclear fission is defined as the ensemble of constraints
imposed on the HFB solution. In this work, we will con-
sider the following constraints, either alone or in combi-
nations: elongation Q̂20, degree of triaxiality Q̂22, mass
asymmetry Q̂30, neck thickness Q̂40 and neck size Q̂N .
These collective variables will be denoted generically by
q = (q1, · · · , qN ). Constrained HFB solutions are ob-
tained by using a variant of the linear constraint method,
in which Lagrange parameters are updated based on the
cranking approximation of the random phase approxima-
tion (RPA) matrix [38, 65, 66].

C. DFT Solver and Numerical Precision

All calculations were performed with the DFT solvers
HFODD [66] and HFBTHO [67]. Both solvers implement
the HFB equations with Skyrme functionals in the one-
center harmonic oscillator (HO) basis. The program HF-
BTHO assumes axial and time-reversal symmetry, while
HFODD breaks all symmetries.

In Cartesian coordinates, the three-dimensional HO
basis is characterized by its frequency ω3

0 = ωxωyωz,
the maximum oscillator number Nmax, the total num-
ber of basis states Nstates, and the deformation β2, which
accounts for the different frequencies in each Cartesian
direction.

The largest driver of basis truncation errors is the size
of the basis [68]. In this work, we fixed Nmax = 31
and Nstates = 1100. The large Nmax value ensures that
high-lying intruder orbitals that drive deformation are
included up to the largest deformation; the cut-off in the
number of states is essentially imposed by the physical
limits on the memory available and CPU time taken by
the calculations.

At the large elongations encountered in the description
of fission, the truncation of the HO model space results
in a strong dependence of the HFB calculations on the
basis frequency and deformation. Based on several exper-
iments, we assume the oscillator frequency ω0 and basis
deformation β2 vary with the requested expectation value
q20 of the axial quadrupole moment Q̂20 according to

ω0 =

{
0.1× q20e

−0.02q20 + 6.5MeV if |q20| ≤ 30b
8.14MeV if |q20| > 30b

(5)

and

β = 0.05
√
q20 (6)

This choice largely mitigates basis truncation effects up
to the scission point, where we empirically estimate the

error on the total energy to be of the order of 2-3 MeV
[68].

From the estimates given above, it should be clear
that accurately capturing the physics of fission with one-
center bases is extremely challenging. Recent studies
of convergence properties in the HO basis have pointed
to the existence of more reliable extrapolation methods
[69, 70]. Translating these results in the context of DFT
may not be straightforward: contrary to the ab initio
approach, the effective Hamiltonian of Skyrme EDFs de-
pends on the density, hence on the model space. The
alternatives to the one-center HO basis all have limi-
tations of their own. Codes using the two-center HO
basis [27, 39, 40], where basis functions must be re-
orthogonalized, or the coordinate-space representation
of quasiparticle wave-functions [71] do not currently in-
clude triaxiality. Lattice representations generate large
amounts of data [72]. A promising alternative based
on multi-resolution wavelet representation of HFB wave-
functions [73] remains in its infancy and may incur a high
cost of a single HFB calculation. As we progress in our
understanding of fission mechanisms, however, it will be-
come more and more necessary to improve the numerical
precision of DFT solvers.

III. STATIC DEFORMATION PROPERTIES OF
240PU

In this section, we discuss the features of the static
potential energy landscape of 240Pu. In particular, our
goals are to (i) discuss and highlight the role of several
shape collective variables, (ii) assess more specifically the
effect of triaxiality on the barriers and beyond scission,
(iii) quantify the effect of the parameterization of the
energy density on predictions of static fission pathways.

A. Overview of the Potential Energy Surface of
240Pu

We begin by presenting a set of two-dimensional po-
tential energy surfaces (PES) that provide useful infor-
mation on the local topography of the total energy in
the 4-dimensional collective space introduced at the end
of Sec. II B. In Fig. 1, we plot the total HFB energy as
a function of the quadrupole degrees of freedom in the
vicinity of the ground-state and the fission barriers. In
this calculation, the octupole moment was set to 0 (sym-
metric path), and the hexadecapole moment was left un-
constrained. The ground-state, (q20, q22) ≈ (35 b, 0 b),
and fission isomer, (q20, q22) ≈ (80 b, 0 b), are clearly vis-
ible, as well as the lowering of the first fission barrier
owing to triaxiality. Although less visible in the contour
map, the second barrier is also slightly triaxial. We will
quantify the effect of triaxiality on the least-energy fission
pathway in more details in Sec. III B.

Next, we show in Fig. 2 the potential energy surface
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FIG. 1. (color online) Two-dimensional potential energy sur-
face of 240Pu in the (q20, q22) plane for the SkM* EDF. The
energy is relative to the ground-state value. The dashed line
represents the symmetric, triaxial least-energy pathway.

in the (q20, q40) plane. The well-known fusion (in the
right-hand side of the figure) and fission (in the left-hand
side) valleys are clearly visible. We note that the barrier
between the two valleys is smaller in our Skyrme SkM*
calculations than, e.g. for the Gogny D1S functional [38].
For the hot fission process, the least-energy fission path-
way starts from the g.s. and follows the fission valley
until the barrier between the fission and fusion valleys
vanishes.
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FIG. 2. (color online) Two-dimensional potential energy sur-
face of 240Pu in the (q20, q40) plane for the SkM* functional.
The energy is relative to -1830 MeV. The dashed line repre-
sents the least-energy pathway.

Finally, we probe the mass asymmetry degree of free-
dom. In Fig. 3, we show the potential energy surface in
the (q20, q30) plane. Since the fission fragment mass dis-

tribution of 240Pu is known to be asymmetric, this degree
of freedom is among the most important for a quantita-
tive description of induced fission. This calculation is by
far the largest, as we have to cover all the collective space
from symmetric fission (up to q20 ≈ 550 b to highly asym-

metric fission (up to q30 ≈ 70 b3/2). In addition, accu-
rate prediction of the fission fragment properties (charge
and mass distributions, kinetic energies, etc.) require
the good identification of the scission region, hence a rel-
atively dense mesh.
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FIG. 3. (color online) Two-dimensional potential energy sur-
face of 240Pu in the (q20, q30) plane for the SkM* functional.
The energy is given relative to -1840 MeV. The dashed line
represents the least-energy pathway.

The figure shows the least-energy fission pathway,

which goes from about q20 ≈ 100 b and q30 = 0 b3/2 and

exits near q20 ≈ 345 b and q30 = 40 b3/2. We note that
there is another fission valley that starts directly from
the ground-state and exits at small elongation but a very

large asymmetry of about q30 > 60 b3/2. This exotic,
very asymmetric, fission channel corresponds to cluster
radioactivity and was discussed recently in Ref. [33].

We also emphasize that the PES of Fig. 3 exhibits clear
signs of discontinuities, especially (but not exclusively) in

the region 300 < q20 < 550 b and q30 ≈ 20 b3/2. As dis-
cussed in detail in Ref. [44], these discontinuities are the
consequence of using the self-consistent procedure in a
truncated collective space of finite size: only a limited
number of collective variables are explicitly constrained,
which produces these numerical artifacts. Such disconti-
nuities, however, provide also great physical insight since
they “automatically” signal where collective degrees of
freedom are missing for the proper description of the pro-
cess.
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B. Fission Pathway of Least-Energy

From this section on, we will focus exclusively on the
least-energy fission pathway. It is defined as the pathway
connecting the ground-state to the point of scission, along
which the energy remains a local minimum in the full
collective space. It was shown recently that the dynamic
fission pathway, as obtained from the minimization of
the collective action together with the proper treatment
of the collective inertia, is very close to the least-energy
pathway [74]. The latter is, therefore, a good approxi-
mation of the most probable fission path.
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relative to the ground-state. The value of the octupole and
hexadecapole moments are also shown along the symmetric
and asymmetric paths.

In Fig. 4, we superimpose the energy along the least-
energy energy fission pathway in three different scenar-

ios: (i) symmetric (q30 = 0 b3/2) fission with no triaxi-
ality (q22 = 0 b, or γ = 0o), (ii) symmetric fission with
triaxiality, (iii) asymmetric fission with triaxiality. In
scenario (ii), we introduced a constraint on the expec-

tation value of Q̂22 during the first few iterations of the
self-consistent procedure, before completely releasing this
constraint: this enabled the nucleus to jump into a tri-
axial region in the case there would have been a small
barrier between the axial and triaxial solutions; finally,
in scenario (iii), the same methodology was repeated for

the octupole degree of freedom Q̂30.
It is well-known that including triaxiality lowers the

first barrier [75–77]. It also lowers the second barrier,
but only along the symmetric fission path. We find that
the degree of triaxiality is large at the first barrier, γ ≈
32o and remains significant in the second barrier, γ ≈
15o. As seen from Fig. 4, the first barrier is lowered by
approximately 2 MeV when triaxiality is included. We

note that both the octupole and hexadecapole moment
vary relatively smoothly along the path.

A clear deficiency of the SkM* functional is that the
first fission barrier height is EA ≈ 7.64 MeV, which is
about 1.6 MeV higher than the empirical barrier [78, 79].
However, predictions of SkM* are in the same ballpark as
those of competing models [30]. In addition, the exper-
imental uncertainty for the fission barrier (which is not
an observable) is usually estimated to be of the order of 1
MeV. One should, therefore, be satisfied with an overall
reproduction of barriers within 1 - 2 MeV of the empirical
value. Similarly, the fact that the one-neutron separation
energy of 240Pu computed with SkM* is Sn = 7.04 MeV,
which is lower than the top of the barrier and (unreal-
istically) implies that 239Pu is not fissile, should not be
cause of special concern because of the uncertainties on
the fission barriers.
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FIG. 5. (color online) Variation of the total HFB energy as
a function of the hexadecapole moment q40 along the least-
energy fission pathway in 240Pu.

Because of the risk of discontinuities, we have employed
various methods to ensure that the one-dimensional fis-
sion pathway is truly the lowest energy path connecting
the ground-state to the scission point, at least within
the numerical accuracy of the calculations. In partic-
ular, we verify a posteriori in Fig. 5 the correctness of
the calculation in the scission region by showing cross-
sections of the energy as a function of the hexadecapole
moment at several points along the path. Together with
the two-dimensional PES of Fig. 2, it confirms that our
least-energy fission pathway stays within the fission val-
ley, and, therefore, corresponds as expected to the hot
fission process.

C. Dependence on the Energy Functional

Previous studies carried out with the finite-range
Gogny pseudopotential and the D1S parametrization
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showed that symmetric fission occurs at very large val-
ues of the quadrupole moment, around q20 ≈ 590 b [38].
We report qualitatively similar results with the Skyrme
SkM* parameterization, although the actual value of the
quadrupole moment is significantly lower, around q20 ≈
550 b. Similarly, the hot scission point for asymmetric fis-

sion is located around (q30, q40) ≈ (64 b3/2, 187 b2) for the

Gogny D1S, while it is (q30, q40) ≈ (40 b3/2, 136 b2) for
the SkM* parameterization. Since we have verified that
the one-dimensional fission pathways reported earlier are
truly at the bottom of the fission valley (see previous sec-
tion), it is highly unlikely that the differences observed
between D1S and SkM* originate from numerical or al-
gorithmic errors. Instead, they should be attributed to
the intrinsically different deformation properties of each
EDF. In this section, we explore the sensitivity of both
the full fission pathway and the position of the scission
configurations on the form of the energy density used.

1. Dependence on the Skryme Energy Density

To investigate further the dependence of the scis-
sion point on the parametrization of the energy func-
tional, we have computed the least-energy fission path-
way with the UNEDF0 [47] and UNEDF1 functionals
[48]. Benchmarks of fission barriers and fission isomer
excitation energies were already reported and discussed
in Refs. [30, 48]. Here, we push the calculation up to
the scission point and beyond. In this section, scission is
simply defined as the occurrence of a sharp discontinuity
in the PES before which the nucleus is whole (qN � 1),
and after which it is made of two fragments (qN � 1).
The energy along the least-energy fission path is shown
in Fig. 6, and the position of the scission point is sum-
marized in Table I.

TABLE I. Approximate position of the scission point in the
(q20, q30, q40) plane for the three parameterizations of the
Skyrme functionals, SkM*, UNEDF0 and UNEDF1.

Functional 〈Q̂20〉 (b) 〈Q̂30〉 (b3/2) 〈Q̂40〉 (b2)
SkM* 345 43 136

UNEDF0 354 44 144
UNEDF1 354 45 146

Interestingly, the position of the scission point is nearly
the same for UNEDF0 and UNEDF1, even though the
prescission energy (difference between the potential en-
ergy at the top of the second barrier and at scission)
is remarkably different, with approximately 12.5 MeV
for UNEDF1 and only 3.4 MeV for UNEDF0. These
differences in deformation energy are especially strik-
ing since these two functionals give very similar results
across a broad range of nuclear observables including
atomic masses, radii, odd-even mass differences, neu-
tron droplets, etc.. They are most likely caused by the

large difference in the surface-symmetry energy between
the two functionals, assym = −44 MeV for UNEDF0,
assym = −29 MeV for UNEDF1, which decreases signifi-
cantly surface tension effects [59].
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FIG. 6. (color online) Energy along the least-energy fission
pathway in 240Pu for three parameterizations of the Skyrme
functional, SkM* [54], UNEDF0 [47] and UNEDF1 [48]. All
curves are given relative to their ground-state value.

2. Dependence on the Pairing Strength

One trademark of the UNEDF family of Skyrme func-
tionals is that the two pairing strengths of the func-
tional (3) are fitted simultaneously with the coupling
constants of the Skyrme functional, i.e., the particle-hole
and particle-particle channel of the EDF are treated on
the same footing. In addition, these functionals are used
with an approximate formulation of the Lipkin-Nogami
prescription to limit the fluctuations in particle number.
The different fission pathways and scission configurations
reported in the previous section could, therefore, be at-
tributed either to the Skyrme functional itself, to the
pairing channel, or to a complex interplay between the
two. In this section, we briefly analyze the role of pairing
correlations alone.

In Fig.7, we have performed additional calculations
of the fission pathway in 240Pu by varying both pair-

ing strengths V
(n)
0 and V

(p)
0 by -10%, -5%, +5% and

+10%. Variations of ±5% of the pairing strength leads
to variations of about 250 keV of the pairing gaps com-
puted in the g.s.. This value is often taken as an estimate
of the predictive power of surface-volume pairing inter-
action combined with Skyrme functionals to reproduce
odd-even mass differences [80].

The effect of pairing correlations on fission barrier and
collective inertia is well-known, see, e.g., [81] and refer-
ences therein. Less known is the impact of pairing cor-
relations on the scission point. We find that increasing
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FIG. 7. (color online) Energy along the least-energy fission
pathway in 240Pu for five parameterizations of the pairing
force and the SkM* parametrization of the Skyrme functional.
All curves are given relative to their ground-state value.

pairing decreases the value of the quadrupole moment
where scission occurs. Conversely, decreasing pairing
moves the scission configurations to larger quadrupole
moments. The effect is particularly pronounced if pair-
ing correlations vanish: for pairing strengths decreased
by both 5% and 10%, neutron pairing correlations are 0
beyond q20 > 238 b, resulting in a shift of the scission
point by nearly 50 b compared to the original calculation.
This result suggests that a predictive theory of nuclear
fission based on DFT will require a very accurate descrip-
tion of pairing correlations.

D. Scission Region

By contrast to current theories of spontaneous fission,
which rely on the detailed knowledge of the potential
energy surface only in the vicinity of the ground-state and
the two fission barriers, models of induced fission need to
describe the collective space up to, and beyond, the point
of scission. Below, we discuss some of the features of the
PES in the scission region for 240Pu.

1. Triaxiality at and Beyond Scission

While the impact of triaxiality on fission barriers has
been established for over forty years, little else is known
about the role of this degree of freedom in the fission
process. The additional cost of breaking axial symmetry
is significant, both computationally and physically (loss
of the K quantum number). The purpose of this section
is to highlight the role of triaxial shapes at scission and
beyond.

We show in Fig. 8 the potential energy of 240Pu for
the SkM* functional in the (q20, q22) plane near scission.

Calculations are based on the least-energy fission path-
way of Fig. 4. For each point in the (q20, q22) mesh of
Fig. 8, the HFB calculation is initialized with the near-
est HFB solution along the least-energy fission pathway,
with the additional condition that the initial solution sat-
isfies q20 < 300 b. The purpose of this last condition is to
ensure that the initial guess for the HFB solution corre-
sponds to a whole nucleus and not two fragments. The re-
sulting map can be interpreted as a local two-dimensional
cross-section in the (q20, q22) along the least-energy fis-
sion pathway.
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FIG. 8. (color online) Two-dimensional potential energy sur-
face of 240Pu in the (q20, q22) plane for the SkM* functional
around the least-energy fission pathway. The energy is nor-
malized arbitrarily at -1820 MeV.
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FIG. 9. (color online) One-dimensional potential energy sur-
face of 240Pu along the q22 direction for the SkM* functional
around the least-energy fission pathway.

Figure 8 suggests that the least-energy fission path-
way corresponds to a relatively flat valley in the (q20, q22)
plane. We note that scission has also occurred in the re-
gion with q22 > 40 b (with γ ≈ 10o), but the 40 MeV bar-
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rier should in practice hinder this scenario for the range
of excitation energy considered here. We show in Fig. 9
one-dimensional cross-sections of the surface for selected
values of q20 in the range 0 ≤ q22 ≤ 10 b. At q20 = 310 b,
the scission barrier is about 6 MeV high, and only 1.5
MeV high at q20 = 340 b. Note that the values of q20

and q22 correspond to very small triaxiality of at most
γ ≈ 1o: from a computational point of view, therefore,
there is very little K-admixture in HFB states. However,
even such tiny effects can have a sizable impact on fis-
sion fragment properties as they shift the scission point
to lower elongations: Table II lists the average proton
and neutron number of the fission fragments at the tri-
axial scission points. There is a variation of about 0.5
proton and 1 neutron across this region.

TABLE II. Variation of the light (L) and heavy (H) fragment
proton and neutron numbers as a function of triaxiality near
the least-energy fission pathway.

q20 (b) q22 (b) ZH NH ZL NL

310.0 7.0 53.6 84.5 40.4 61.4
320.0 6.0 53.7 84.8 40.3 61.2
330.0 5.0 53.9 85.2 40.1 60.8
340.0 4.3 54.0 85.5 40.0 60.6

The modification of the fission fragment properties in-
duced by triaxiality should be visible in a dynamical de-
scription of fission such as the time-dependent generator
coordinate method [27, 28]. The relative flatness of the
collective space in the (q20, q22) plane should indeed di-
vert a fraction of the collective flux, which will impact the
relative charge and mass distributions of the fragments.
In addition, we may expect a non-zero dissipation in en-
ergy in the transverse collective modes, here character-
ized by the q22 collective variable, which should reduce
the available prescission energy [26].

2. Continuous Evolution Across the Scission Point

As discussed extensively in Ref. [38], an accurate pre-
diction of fission fragment properties is not possible if
the collective space is restricted to the (q20, q30, q40) vari-
ables, see also Sec. IV E below. Including the triaxial
degree of freedom does not fundamentally alter these con-
clusions: in such restricted collective spaces, scission still
manifests itself by a sharp discontinuity of the potential
energy surface. Just before this discontinuity, the pre-
fragments are heavily entangled with the consequence
that the calculated total kinetic energy is totally unreal-
istic; Just after the discontinuity, however, the fragments
are neatly separated but in their ground-state: this is a
consequence of the variational principle behind the HFB
approach, and is in contradiction with the experimental
evidence that fission fragments are excited after scission.

It is, in fact, quite simple to introduce additional col-
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FIG. 10. (color online) Potential energy surface in the
(q30, qN ) plane just before scission for the SkM* functional.

The axial quadrupole moment Q̂20 is fixed at q20 = 345 b, the
triaxial quadrupole Q̂22 and hexadecapole moments Q̂40 are
unconstrained. The energy is normalized arbitrarily at -1827
MeV.

lective variables that will transform the discontinuity at
scission into a continuous pathway. Among the possible
choices, a constraint Q̂N on the density of particles in
the neck between the two pre-fragments has often been
used, both in the context of spontaneous fission [64], and
induced fission [38]. We show in Fig. 10 a close-up of the
local potential energy surface of 240Pu near the scission
point for the SkM* functional. The axial quadrupole mo-
ment is fixed at q20 = 345 b while the triaxial quadrupole
Q̂22 and hexadecapole moments Q̂40 are unconstrained.
Only the range [0, 1] of qN is represented, as it is in this
area that the scission process seems to take place (see
discussion in Sec. IV B). At qN = 1, the least-energy fis-
sion pathway emerges at q30 ≈ 30 b3/2. It broadens up
to form a wide “estuary” in the (q30, qN ) subspace: the
energy surface is very shallow across a large range of oc-
tupole moments. This should manifest itself by a sizable
broadening of the yields.

In order to better visualize the variations in energy
when following this continuous path, we show in Fig. 11
the one-dimensional profile of the total energy as a func-
tion of qN for the three functionals used in this work.
For each curve, the value of the axial quadrupole mo-
ment is fixed at the value just before scission as listed in
Table I, and calculations are performed with a constraint
on Q̂N . All other multipole moments are unconstrained.
The curves are normalized at the value of qN = 4.5. It
is worth noticing that the energy gain along this extra
dimension in the collective space is very similar for all
three functionals, even though the potential energy sur-
face in the q20 direction can be dramatically different, see
Fig. 4. On average, variations of qN lower the energy by
up to 12-15 MeV.

Most importantly, this new degree of freedom provides
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FIG. 11. (color online) Total energy as a function of the den-
sity of particles in the neck qN along the least-energy fission
pathway for the SkM*, UNEDF0 and UNEDF1 functionals.
All curves are normalized relative to their respective values
at qN = 4.5. Inset contour plots show the density profile at
qN = 4.0 and qN = 0.3.

a mechanism to pass continuously from a single whole nu-
cleus to two distinct fragments. The qN degree of freedom
can, therefore, be viewed as a kind of control parameter.
It can be used in several ways. The scission configura-
tions can be chosen along the qN axis arbitrarily, on the
sole basis of phenomenological comparisons with exper-
imental data, e.g. on charge and mass distribution of
fission fragments. Alternatively, additional criteria can
be invoked to pin down the scission configuration at a
given value of qN , or in a given interval of qN values.
This is the approach that we chose and that we discuss
in more details in the next section.

IV. NUCLEAR SCISSION AND FISSION
FRAGMENT PROPERTIES

The purpose of any theory of induced fission is to pre-
dict fragment properties such as charge and mass dis-
tribution, kinetic energy, excitation energy of each frag-
ment, fission spectrum, etc., as these correspond to mea-
surable quantities. In the nuclear DFT approach, com-
puting these properties require introducing scission con-
figurations in the compound nucleus. After a brief his-
torical reminder, we present below the methods that we
used to define the scission configurations, as well as its
application in the calculation of fission fragment proper-
ties for the least-energy fission pathway of 240Pu.

A. On the Definition of Scission

The concept of a scission point has its origin in the
liquid drop (LD) picture of the nucleus and reflects the

fact that for very large deformations, the LD potential
energy is a multi-valued function of the deformation pa-
rameters [11, 82, 83]. These multivalues generate discon-
tinuities in potential energy landscapes, which are still
widely used as a criterion to define the scission configura-
tions [28, 35, 38, 39]. However, as we have recalled in the
previous section, these discontinuities are entirely spuri-
ous since locally enlarging the collective space can easily
restore the continuity of the full PES [44]. In addition,
continuous PES give additional flexibility to define the
scission configurations and improve the predictive power
of the theory.

As mentioned above, rather than use the qN degree
of freedom as a simple control parameter that we could
tune to data, we would like to find general criteria, based
either on mathematics and/or on physics, to define the
scission configurations, and let the theory take care of
the comparison with the data without further empirical
adjustments. The simplest criterion one could invoke to
define scission is to set a minimum value for the size of the
neck, q

(min)
N , below which one assumes the neck is small

enough that the two fragments can be considered fully
formed [38, 39]. Such an approach has the advantage to

be easy to automate, but the choice of q
(min)
N remains en-

tirely arbitrary. A possible extension would be to set up

a range in qN values, say Iq = [q
(min)
N , q

(max)
N ], where scis-

sion configurations are chosen, and use the boundaries
of this interval as estimates of theoretical errors. Ideally,
this interval should be as narrow as possible. Since at
scission one connected nucleus becomes two un-connected
fragments, tools based on detecting connectivity features
in datasets (here the nuclear density) should be appli-
cable, and may help in making the determination of Iq
less arbitrary. We will explore this option in details in
Sec.IV B.

For the sake of completeness, we also mention an al-
ternative strategy to identify scission configurations. It
was recognized early on that the competition between
the repulsive Coulomb and the attractive nuclear force
may induce the scission of the nucleus even when there
still remains a sizable neck between the two nascent frag-
ments: the ratio of the Coulomb energy over the nuclear
interaction energy can, therefore, provide a complemen-
tary, dynamical, criterion for scission [84, 85]. Recently,
a similar approach was formalized in the context of nu-
clear density functional theory [37]. Two major ingredi-
ents are required: (i) the calculation of the Coulomb and
nuclear interaction energy, (ii) a procedure to ”localize”
the fragments, since both the Coulomb and nuclear inter-
action energy are representation-dependent, see Sec.IV D
below. These approaches can of course be combined with
the method we describe below.

B. Topological Identification of the Scission Point

As mentioned above, one possible way to define scis-
sion configurations is to use computational tools that de-
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tect connectivity features in datasets. The problem we
are posing is thus the following: given a set of neutron
and proton densities {ρn(r), ρp(r)}qN computed at each
point along some trajectory – here parametrized by the
expectation value qN of the neck operator, is it possible to
identify changes in the densities that could be interpreted
as the transition from a single nucleus to two fragments?
It is one instance of a wider problem in computational
science, that of identifying, within data, combinatorial
changes that are assumed to be markers for a physical
phenomena. In fact, it is possible to characterize such
combinatorial changes using a vocabulary that is inde-
pendent of assumptions about numerical thresholds in
the physical system. In place of geometric properties,
our approach draws on the mathematics of topology to
derive global properties (invariants) of space. Topological
analysis of datasets results in structural abstractions that
can be used to answer questions of whether two spaces
have fundamentally the same shape, and to articulate
the types of differences that appear. In the physical sci-
ences, topological feature analysis is well known – in the
study of flow (e.g. vortices, separatrices) [86–88], and
in the analysis of scalar fields (e.g. critical points) [89–
91]. Its main advantage is that it moves identification
of phenomena from assessment against empirical, pos-
sibly subjective, thresholds into binary decisions based
on change to the discrete structures that express funda-
mental topological properties. This leaves two questions:
which (if any) topological change in data correlate with
the physical phenomena of interest, and can topological
structure be computed “effectively”?

Recent work in scientific visualization and computa-
tional topology has shown how to analyze features in
functions of the form f : R3 → R, such as the local
nuclear density ρ(r). In these functions, the connec-
tivity of isovalued contours can be analyzed using the
contour tree [92], which captures the relationships of all
possible contours in a data set. Fig. 12 gives a pedagog-
ical illustration of the technique: maxima and minima
of the contour map are leaves of the tree, while critical
points (saddles) are interior nodes. Moreover, one char-
acterization of critical points is that they are the highest
points at which two peaks are connected. As a result, the
critical points naturally define features corresponding to
branches of the tree. Subsequent work showed that these
features can then be tracked over time (or any other rel-
evant parameter) [93].

While this approach works for single-valued functions,
it needs modification for bivariate functions of the form
(f, g) : R3 → R2. For such a function, contours do not
naturally divide it into features, and a generalization of
the contour tree is required, as shown in Fig. 13. Here,
the domain is divided along contours of both f and g,
resulting in a set of regions, or “slabs”, as shown. To un-
derstand how the abstract graph of panel (b) is obtained
from the original contours of panel (a), consider for in-
stance the lower left corner of panel (a): the slab marked
(3,2) is adjacent to the slabs (3,1) and (4,2). Hence, the
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FIG. 12. Two small functions f(x, y) and g(x, y) on a trian-
gular mesh (dashed lines) shown as contour plots and their
respective contour trees. Circled (a) and squared (b) points
represent the values of the function on the mesh.

node (3,2) is connected to the two nodes (4,2) and (3,1).
Systematically analyzing the connectivity of these slabs
thus gives the Joint Contour Net (JCN) shown in Panel
(b) of Fig. 13: an abstract representation of the joint
variation of f and g [94].

(3,1)

(3,2) (4,2)
(5,2) (6,2)

(4,3)

(5,3)
(6,3)

(7,3)

(8,3)

(4,4)

(5,4)
(6,4)

(7,4)

(5,5)
(3,6) (2,6)

(4,6)

(6,6)

(7,6)

(8,7)
(7,7)

(6,7)

(3,7)
(2,7)

(7,8)

(2,8)

(3,1)

(3,2)

(4,1)

(4,2)

(5,2) (6,2) (7,2)

(4,3)
(5,3)

(6,3)
(7,3)

(8,3)

(9,3)

(4,4)
(5,4)

(6,4)

(7,4)

(5,4)

(5,5)

(8,4)

(6,5)

(4,5)

(6,5)
(3,5)

(3,6)

(2,6)

(4,6)
(5,6)(6,6)

(7,6)

(8,7)
(7,7)

(6,7)
(5,7)

(4,7)
(3,7) (2,7)

(6,8) (5,8)

(4,8) (3,8)

(2,8) (1,8)

(4,9) (3,9)(2,9)(1,9)(7,8)

(a) (b)

FIG. 13. Joint contour slabs found by intersecting the slabs of
functions f and g of Fig. 12 (a); Joint Contour Net obtained
by analyzing the connectivity of the slabs, see text for details
(b).

The case of nuclear fission lends itself perfectly to such
an analysis. Indeed, within nuclear DFT the nucleus is
entirely characterized by the neutron (ρn) and proton
(ρp) densities, which will play the role of the two dis-
tinct yet correlated scalar fields f and g in the example
of figures 12-13. Any special feature of the JCN graph
associated with the bivariate function (ρp, ρn) : R3 → R2

could therefore, in principle, be given a physical inter-
pretation. In fact, we have recently shown that the sud-
den division of the compound nucleus in two separate
fragments at the discontinuity of one-dimensional fission
pathways E(q20) is clearly associated with a fork in the
JCN [95]. Here, we extend the method to the more dif-
ficult problem of detecting features along a continuous
fission pathway characterized by the qN constraint.

Fig. 14 illustrates the application of the JCN method
to the detection of scission in 240Pu. The contour nets
are extracted from the densities of 240Pu at the two val-
ues qN = 0.1 and qN = 4.0, see Fig. 11. The principal
visual features of the JCN are forks and circular struc-
tures, which we named starbursts:
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(a)

(b)

FIG. 14. (color online) JCN graphs near the scission for 240Pu
at qN = 4.0 (a) and at qN = 0.1 (b). The principal feature
visible is that the single branch for high isovalues of the den-
sities (upper right side of top figure) at qN = 4.0 has forked
into two distinct high isovalues branches (upper right side of
bottom figure) at qN = 0.1, each branch featuring starbursts.

• As recalled above, a fork at the high-density end of
the JCN (red, upper right part of each graph) shows
the presence of two distinct features meeting at a
critical point, rather than a single peak, i.e. two
topologically distinct regions of space [95]. Here, we
interpret the first occurrence of such a fork at high
density values as the precursor to scission, marking
the upper bound q(max) of the interval Iq defining
scission.

• Subsequent development of the “starburst” in each
branch suggests that these two regions acquire in-
dependent internal structure. That is, the range
and variation in proton and neutron field density
levels in the two distinct regions is commensurate
with that present in the nucleus before the appear-
ance of branching. Therefore, we interpret the first
occurrence of such starbursts as the signal that the
nucleus has split into two well-formed fragments,

which defines the lower bound q(min) of Iq.

While visual interpretation of the features of the JCN
graph relies on judgements based on calibration exper-
iments, the underlying graph is mathematically well-
defined and its construction is topologically rigorous.
The only input to analysis is the spatial representation of
the neutron and proton densities, and the single output
is an estimate of the interval Iq where scission occurs.
When scanning the entire range in qN value from 0 to
4.5, we have found that the interval Iq was Iq = [0.2, 2.6]
for SkM* and UNEDF0, and Iq = [0.2, 2.2] for UNEDF1.

For applications to nuclear fission, Joint Contour Net
analysis depends principally on the level at which the
density values are quantized into slabs. Initial work
showed that analysis can detect scission at different levels
of quantization, with finer levels of quantization narrow-
ing the candidate scission point to a smaller number of
sites [95]. Beyond a certain limit no further narrowing
was observed, suggesting that the analysis is then con-
strained by the data, that is, independent of the quanti-
zation level.

C. Fission Fragment Identification

Topological methods such as the JCN can automate
the identification of a putative scission region in the col-
lective space. In order to compute fission fragment prop-
erties within this region, the density matrix and pairing
tensor of each of the fragments must be determined. We
start from the set of quasi-particles for the compound
nucleus defined by the Bogoliubov matrices U and V .
The coordinate space representation of the full one-body
density matrix (in coordinate⊗spin space) reads

ρ(rσ, r′σ′) =
∑
ij

ρijφi(rσ)φ∗j (r
′σ′), (7)

with φi(rσ) the basis functions, and ρij =
∑
ij V

∗
iµVjµ

the configuration space representation of the density ma-
trix. We can introduce a quasiparticle (q.p.) density
ρµ(rσ, r′σ′) by

ρµ(rσ, r′σ′) =
∑
ij

V ∗iµVjµ φi(rσ)φ∗j (r
′σ′), (8)

such that the occupation Nµ of a single quasi-particle µ
is simply

Nµ =
∑
σ

∫
d3r ρµ(rσ, rσ). (9)

Since the basis {φi} is orthonormal, this reduces to the
well-known expression Nµ =

∑
ij V

∗
iµVjµ, with the to-

tal number of particles defined as N =
∑
µNµ. Let

us assume the neck is located along the z-axis of the
intrinsic reference frame, and thus has the coordinates
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rneck = (0, 0, zN ). We can then define the occupation of
the q.p. µ in the fragment (1) as

N1,µ =
∑
ij

V ∗iµVjµdij(zN ), (10)

where

dij(z) =
∑
σ

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ z

−∞
dz φi(rσ)φ∗j (rσ).

(11)
The occupation of the q.p. in the fragment (2) is simply
N2,µ = Nµ−N1,µ. We then assign the q.p. µ to fragment
(1) if N1,µ ≥ 0.5Nµ, and to fragment (2) if N1,µ < 0.5Nµ.
In this way, the full set of q.p. is partitioned in two
subsets, each corresponding to one of the fragments.

These two sets of q.p. allow us to build the analogs
of the density matrix and the pairing tensor for the frag-
ments. In coordinate⊗spin space, we will thus define

ρf(rσ, r
′σ′) =

∑
µ∈(f)

∑
ij

V ∗iµVjµ φi(rσ)φ∗j (r
′σ′), (12)

κf(rσ, r
′σ′) =

∑
µ∈(f)

∑
ij

V ∗iµUjµ φi(rσ)φ∗j (r
′σ′), (13)

with f = 1, 2 labeling the fragment. Note that, by con-
strast to the full density matrix of the compound nucleus
ρ, the objects ρ(f) are not one-body densities in the strict
mathematical sense. In particular, they are not projec-
tors in Fock space, ρ(f)2 6= ρ(f). Also, the usual relations
ρ2 +κκ† = 0 are not necessarily satisfied for ρ(f) and κ(f).
We should therefore refer to these objects as pseudoden-
sities, to emphasize their empirical nature. The diagonal
component of these pseudodensities (in coordinate⊗spin
space) ρ(1)(r), ρ(2)(r), κ(1)(r) and κ(2)(r) for each frag-
ment can be obtained as usual, for example,

ρ(f)(r) =
∑
σσ′

ρ(f)(rσ, rσ′) (14)

define the local pseudodensity in fragment “f”. Similarly,
one can define the analog of the kinetic energy density,

τ (f), and the spin current tensor, J
(f)
µν , for each fragment,

as well as their time-odd counterparts [24, 96].
After the pseudodensity matrix and pairing pseudoten-

sor of each fragment have been defined, all fragment
energies and interaction energies can be computed in a
straightforward manner at the HFB approximation. The
Coulomb interaction energy between the fragments is

ECou = E1→2
Cou + E2→1

Cou . (15)

For both the direct and exchange term, E1→2
Cou = E2→1

Cou ,
hence we find

E
(dir)
Cou = 2e2

∫
d3r

∫
d3r′

ρ(1)(r)ρ(2)(r′)

|r − r′|
, (16)

while the (attractive) exchange Coulomb interaction en-
ergy is defined by

E
(exc)
Cou = 2e2

∫
d3r

∫
d3r′

ρ(1)(r, r′)ρ(2)(r′, r)

|r − r′|
. (17)

In these expressions, ρ(1) is the pseudodensity in frag-
ment (1), ρ(2) the isoscalar density in fragment (2), and
e2 = ~c/α is in MeV.fm. In our calculations, the direct
Coulomb energy was computed using the Green function
method as in Ref. [97] while we used the Slater approx-
imation for the exchange part. The (attractive) nuclear
interaction energy, which, in our case, is the Skyrme in-
teraction energy, is similarly given by

ESkyrme
nuc = E1→2

nuc + E2→1
nuc , (18)

and

E1→2
nuc =

∑
t=0,1

∫
d3r

{
Cρt ρ

(1)
t ρ

(2)
t + C∆ρ

t ρ
(1)
t ∆ρ

(2)
t +

Cτt ρ
(1)
t τ

(2)
t + CJt

∑
µν

J
(1)
µν,tJ

(2)
µν,t + C∇Jt ρ

(1)
t ∇ · J (2)

t

}
.

(19)

Permute indices 1 and 2 to obtain the second term in
Eq.(18). Note that, contrary to the Coulomb energy, it
is not symmetric under permutation of the fragments,
i.e., E1→2

nuc 6= E2→1
nuc . Because of the zero-range of the

Skyrme force, Eq.(19) contains both direct and exchange
contributions.

D. Quantum Localization

In this section, we expand on the quantum localiza-
tion method first introduced by Younes and Gogny in
Ref. [37]. A consequence of the quantum mechanical na-
ture of the system is that the coordinate representations
ρ(1)(r) and ρ(2)(r) of the local pseudodensities of each
fragment near scission are not clearly localized within
their respective fragment: the pseudodensity ρ(1)(r) has
a tail that extends significantly into fragment (2) and
vice-versa, see Fig. 15. In the HFB theory, this delocal-
ization of the density can be traced back to the individual
quasi-particles, and can be captured by the following in-
dicator

`µ =
|N1,µ −N2,µ|

Nµ
, (20)

with Nµ defined by Eq. (9) and N1,µ, N2,µ by Eq. (10). If
`µ = 0, the q.p. µ is fully delocalized, if `µ = 1 it is fully
localized either in the left or in the right fragment. The
tails in the pseudodensities are produced by the contri-
butions from the delocalized q.p. states with relatively
large occupation and 0 ≤ `µ � 1.

The larger the overlap between ρ(1)(r) and ρ(2)(r) is,
the larger (in absolute value) the Coulomb and nuclear
interaction energy, and the lower the fragment intrinsic
energies, i.e., the higher the excitation energy of the frag-
ments, since, in the HFB approximation,

Etot[ρ
(1) + ρ(2)] = E1[ρ(1)] + E2[ρ(2)] + Eint, (21)
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with Eint = Edir
Cou + Eexc

Cou + Enuc. Consequently, we find
that both the fission fragment properties (total excitation
energy, deformation, etc.) and the total kinetic energy of
the accelerated fragments depend on the overlap between
ρ(1)(r) and ρ(2)(r); Qualitatively, the two fragments are
entangled.

This entanglement poses a conceptual problem when
comparing theoretical predictions with experimental
data on fission fragment properties. Indeed, it is well-
known that the generalized HFB density R associated
with a given set of q.p. operators (βµ, β

†
µ) is invari-

ant under any unitary transformation of these opera-
tors, see e.g. Refs. [98, 99]. While all global observables
such as energy, angular momentum, etc., are invariant,
local properties associated with any subset of the q.p.
states may not be. In other words, the energies E1[ρ(1)],
E2[ρ(2)] and Eint are representation-dependent: any uni-
tary transformation of the generalized density can change
their value. This is clearly a problem, since these quan-
tities are directly related to experimental observables.

One must, therefore, choose an adequate representa-
tion of the generalized density in order to compute frag-
ment properties. Obviously, this choice can not be arbi-
trary but should instead be guided by physical considera-
tions. The only inambiguous available experimental data
is that fission fragments are independent of one another:
there is no interaction between the two other than the
repulsive Coulomb force. Therefore, the optimal repre-
sentation should be the one where Enuc → 0. In the HFB
approach, this is achieved if all q.p. are fully localized in
a given fragment. Therefore, for any of the scission con-
figurations chosen in the Iq interval introduced earlier,
physics arguments dictate that one introduces a unitary
transformation T of the q.p. such that the localization of
each individual q.p. is maximized. This transformation
would localize the fragments by reducing the tails of the
densities while leaving the global properties of the nu-
cleus unchanged, and would thus ensure that the asymp-
totic conditions of the fission process (the fact that the
fission fragments are independent systems) are obeyed.

In fact, this need for localization is reminiscent of elec-
tronic structure theory. Similar ideas were introduced
long ago in quantum chemistry to describe the static
bonding structure of molecules, see, e.g. Ref. [100] and
references therein. Since the concept of localization is
built on the fact that the wave-function of the system
is a product state (of independent particles), it is also
highly relevant to calculations featuring electronic DFT
[101]; see, e.g. recent developments in ab initio molec-
ular dynamics [101–103]. In all these cases, the origi-
nal, often called canonical, calculations tend to yield so-
lutions which are delocalized over the entire molecule:
while such functions can reproduce ionization potentials
and spectral transitions, they fail to describe chemical
bonding structure, which is by nature localized near the
atoms [104]. By contrast, localized wave-functions pre-
serve global observables and can also explain chemical
bonding properties.

We choose our unitary transformation T as follows: for
any given pair (µ, ν) of q.p., we pose(

U ′µ
U ′ν

)
= T

(
Uµ
Uν

)
,

(
V ′µ
V ′ν

)
= T

(
Vµ
Vν

)
, (22)

with the matrix T of the transformation T given by

T =

(
cos θµν sin θµν
− sin θµν cos θµν

)
. (23)

The angle of the rotation can be different for every pair
of q.p. It can be chosen so as to maximize the localiza-
tion of each q.p. of the pair. In the following, we drop
the indexes µ and ν for simplicity, θ ≡ θµν . Additional
details and discussion can be found in Ref. [37, 105].

It is immediate to see that the full density matrix of the
compound nucleus ρ is invariant under such a transfor-
mation. The occupation of any q.p. µ, however, becomes

N ′µ =
∑
ij

[
cos2 θV ∗iµVjµ + sin2 θV ∗iνVjν

+ sin θ cos θ(V ∗iµVjν + V ∗iνVjµ)
]
. (24)

We write

N ′µ = cos2 θNµ + sin2 θNν + sin θ cos θ ωµν(−∞), (25)

with

ωµν(z) =
∑
ij

(V ∗iµVjν + V ∗iνVjµ)dij(z). (26)

We note that ωµν(z) = ωνµ(z), and ωµν(−∞) =∑
i(V
∗
iµViν + V ∗iνViµ). For the q.p. ν, the minus sign

in front of the sine in the rotation matrix leads to

N ′ν = cos2 θNν + sin2 θNµ − sin θ cos θ ωνµ(−∞). (27)

By extension, we find that the occupations of q.p. µ
in each of the fragment then reads

N ′1,µ = cos2 θN1,µ + sin2 θN1,ν

+ sin θ cos θ [ωµν(−∞)− ωµν(zN )],

N ′2,µ = cos2 θN2,µ + sin2 θN2,ν + sin θ cos θ ωµν(zN ),
(28)

while for q.p. ν they are

N ′1,ν = cos2 θN1,ν + sin2 θN1,µ

− sin θ cos θ [ωνµ(−∞)− ωνµ(zN )],

N ′2,ν = cos2 θN2,ν + sin2 θN2,µ − sin θ cos θ ωνµ(zN ),
(29)

In practice, one determines the optimal angle θ for each
pair by maximizing the quantity `µ+`ν for the pair (µ, ν).

E. Fragment Interaction Energy and Kinetic
Energy

We apply the topological method described in
Sec. IV B and the quantum localization technique pre-
sented in Sec. IV D to the case of 240Pu. The JCN anal-
ysis has identified an interval Iq for the scission configu-
ration,with qN ≤ 0.2 the most likely candidates for the
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actual scission point. For each value of qN ∈ Iq, we then
search for the representation of the generalized density
yielding the maximum localization of the fragments by
considering all rotations of pairs of q.p. according to
Eq.(23). In practice, not all pairs of q.p. need to be
rotated: q.p. corresponding to deeply-bound states are
pretty well localized; q.p. with a small occupation con-
tribute little to the interaction energy, even if they are
very delocalized. We can thus limit the computational
burden by applying the localization only on a subset of
q.p.. We chose the following empirical criteria: (i) the
occupation of each q.p. µ is at least Nµ > 0.005, (ii)
the localization indicator `µ is ` < 0.75, and (iii) the q.p.
energies of the pair are taken in a 2.0 MeV energy win-
dow, |Eµ − Eν | ≤ 2 MeV. In addition, we impose both
q.p. of a given pair to be of the same nature, i.e. either
particle-type or hole-type. We discuss in the appendix
how results change with respect to the choice of these
parameters.
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FIG. 15. (color online) Total, left and right fragment densities
before (plain lines) and after (dashed lines) the localization
of q.p. at the qN = 0.4 point of 240Pu. Calculations for the
SkM* functional.

Figure 15 shows the effect of the localization on the to-
tal isoscalar density for the SkM* functional at the point
qN = 0.4. Superimposed to the total density are the
fragment isoscalar densities given by Eq. (13). The plain
lines correspond to the densities before localization, the
dashed lines after the localization procedure has been
applied. In this example, the localization decreases by
about an order of magnitude the tails of the densities,
which will have a sizable impact on the interaction en-
ergy. Note that, as expected, the total density is invariant
under the unitary transformation (23).

Figure 16 shows the nuclear interaction energy betwen
the fragments for the three functionals considered in this
work as a function of the number of particles in the
neck. The nuclear interaction energy was computed from
Eq. (19), with the sets (1) and (2) of q.p. determined be-
fore/after localization. We notice the dramatic effect of

the localization, especially for larger values of qN ; it is
also worth mentioning that the localization tends to av-
erage out the fluctuations of interaction energy across the
range of collective variables. While there are small differ-
ences between the Skyrme parametrizations, we observe
that both the overall scale and the trend of the interac-
tion energy as a function of qN are similar. The Skyrme
interaction energy is also very similar to results obtained
with the Gogny force [37].
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FIG. 16. (color online) Skyrme interaction energy between
the fission fragments in 240Pu as a function of the number of
particles in the neck for the SkM*, UNEDF0 and UNEDF1
functionals. Plain curves correspond to the calculation before
the localization is applied, dashed curves to after it has been
applied.

In the DFT framework, the total kinetic energy (TKE)
of the fully accelerated fragments is the sum of the
Coulomb energy (direct and exchange), the nuclear in-
teraction energy, the fragment prescission energy, and
the dissipation energy,

TKE = E
(dir)
Cou + E

(exc)
Cou + Enuc + Epre + Edis (30)

In Eq.(30), the leading term is the the direct part of the

Coulomb energy. Fig. 17 shows how E
(dir)
Cou changes as

a function of qN . Note that we computed this quantity
according to Eq.(16), i.e., fully taking into account the
deformation of the fragments. At the most likely scission
point, qN = 0.2, see Sec. IV B, the direct Coulomb term

is approximately E
(dir)
Cou = 185 MeV and is relatively in-

dependent of the functional. The exchange contribution

E
(exc)
Cou is very small: it ranges from -4 MeV for large qN

values to less than 200 keV around qN = 0.2: it can be
neglected at scission. The nuclear interaction part de-
pends to a large extent on how well the fragments can
be localized. In our calculations at qN = 0.2, we find
Enuc ≈ −22.9 MeV for SkM*, Enuc ≈ −18.9 MeV for
UNEDF0, and Enuc ≈ −0.7 MeV for UNEDF1. However,
we also observe large fluctuations as a function of qN and
the parameters of the localization procedure, as seen in
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Figs. 16-18. Conservatively, one may estimate that Enuc

ranges between -25 and 0 MeV on average, depending on
the functional (both particle-hole and particle-particle
channels), and the quality of the localization. Finally,
the pre-scission energy is also strongly dependent on the
deformation and pairing properties of the functional, as
discussed in Sec.III C; for our small subset of three EDF,
it ranges between 20 and 30 MeV on average.
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FIG. 17. (color online) Direct Coulomb interaction energy
between the fission fragments in 240Pu as a function of the
number of particles in the neck for the SkM*, UNEDF0 and
UNEDF1 functionals. Plain curves correspond to the calcula-
tion before the localization is applied, dashed curves to after
it has been applied.

Because of internal dissipation, not all the prescission
energy is available to the fragments in the form of ki-
netic energy. There is a loss equivalent to the amount of
dissipated energy Edis. Estimating this quantity requires
to consider the various forms of dissipation. Collective
dissipation represents the loss of energy due to collective
excitations “transverse” to the fission path: it was esti-
mated to be of the order of 2.1 MeV for Q40 [40] and
about 3.1 MeV for Q30 [26]. Additional dissipation in
the Q22 collective variable could also be possible, based
on the remarks of Sec. III D 1. Intrinsic dissipation could
be represented by multi-qp excitations and may be esti-
mated in extensions of the GCM framework [106]. It does
not seem unreasonable to estimate that between 5 and
15 MeV of energy could be dissipated when combining
both collective and intrinsic sources of dissipation.

Based on this estimated budget of the various terms in
Eq.(30), we can estimate the TKE for the most probable
fission in 240Pu to be TKE≈ 185+25

−15 MeV. This is com-
parable with what Younes and Gogny found using the
Gogny force [37]. Although in decent agreement with
the experimental TKE, which is of the order of 185 MeV
for the most likely fission [107–109], we should point out
that it is a very conservative and rough estimate based
on a sample of only three Skyrme functionals (including
one, UNEDF0, with notoriously poor deformation prop-

erties [47]). Better constraining deformation and pairing
properties of functionals should reduce the theoretical
uncertainty on the amount of pre-scission energy; imple-
mentation of the localization method on a larger scale,
i.e., by considering more pairs of q.p., should reduce the
fluctuations of the remaining nuclear interaction energy.
Obtaining reliable estimates of dissipation energy is cer-
tainly an open question at this time.

We conclude this section by mentioning that at the
point of discontinuity in Fig. 4, the value of Q̂N is
qN = 4.55, and the value of the Coulomb repulsion en-
ergy is 274 MeV: this clearly unphysical values justifies a
posteriori the need to include the Q̂N degree of freedom
(or any collective variable that can fulfill its role).

V. CONCLUSIONS

The description of induced nuclear fission in a mi-
croscopic framework based exclusively on realistic nu-
clear forces and advanced many-body methods remains
a formidable endeavor. In this work, we have reported
some progress in understanding several of the key ingre-
dients in a theory of fission based on the nuclear density
functional theory with Skyrme energy densities. We have
focused on the benchmark case of the neutron-induced
fission of 239Pu:

• We have provided a nearly complete mapping of
the deformation energy of the compound nucleus
240Pu in a 5-dimensional collective space including
all quadrupole degrees of freedom, mass asymme-
try, hexadecapole moments and neck size. While
these degrees of freedom are most likely sufficient
to cover the physics of spontaneous fission, where
a detailed knowledge of scission is not really neces-
sary, we point out that the potential energy surface
becomes increasingly complex near scission: further
studies of induced fission will most likely require
choosing better sets of collective variables, for ex-
ample quantities related to each fragment [25, 85].

• We have studied the role of triaxiality in the fission
process. In addition to the well-known effect of low-
ering the first fission barrier heights of actinides, we
have shown that this collective variable also plays
a role at scission. We posit that this extra degree
of freedom could contribute to the decrease of the
prescission energy by dissipation in transverse col-
lective modes, and could result in a broadening of
the fission fragment mass yields.

• We have emphasized the importance of both the
form and the parametrization of the energy func-
tional. Different parameterizations of the same
Skyrme functional can lead to huge fluctuations in
deformation energies [59], which are further mag-
nified near scission; pairing correlations also play a
crucial role in determining the region of scission.
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• We have presented a general strategy to identify
fission fragments in as automatic a way as possi-
ble. This two-step approach first takes advantage
of the Joint Contour Net topological method to de-
fine the scission configurations, and then localizes
the fragment following the general idea of Ref. [37].
We believe this approach reduces the uncertainty in
determining the point where fission fragment prop-
erties must be compared with experimental data.
The application of this technique to the calcula-
tion of fission fragment TKE in 239Pu(n,f) for the
most probable fission shows a decent reproduction
of data.

Both the methodology and the results reported in this
work pertain to the static aspects of low-energy fission
only. As the excitation energy of the compound nucleus
increases, one should certainly question the capability
of current functionals to capture the physics of fission
at the HFB level. Potential energy surfaces in general,
and fission barriers in particular, may be quite different.
One may also wonder if the two-step process introduced
here to define a scission point remains applicable. In the
following paper, we will address these aspects by using a
finite-temperature formalism.
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Appendix A: Characteristics of the localization
method

A unitary transformation T of the q.p. that do not
mix annihilation and creation operators transforms the
Bobgoliubov matrix W into W ′ as

W ′ =W
(
TT 0
0 T †

)
, (A1)

with T a unitary matrix, TT † = T †T = 1. Such a unitary
transformation preserves the HFB equations even though
the HFB matrix is not diagonal any longer [99]. This is a
simple consequence of the Bloch-Messiah theorem [110].
Indeed, the HFB matrix in the transformed q.p. basis
reads

H′ =

(
T ∗ 0
0 T

)(
E 0
0 −E

)(
TT 0
0 T †

)
(A2)

that is,

H′ =

(
T ∗ETT 0

0 −TET †
)
. (A3)

However, it is straightforward to show that the general-
ized density R remains invariant under the transforma-
tion T , and that the HFB equations are preserved,

[H′,R′] = 0 (A4)

In the particular case where the unitary transformation
is defined by Eq.(23), a simple calculation shows that the
q.p. energies of the pair (µ, ν) transform as(
Eµ 0
0 Eν

)
→
(
Eµ 0
0 Eν

)
−∆E sin θ

(
sin θ cos θ
cos θ − sin θ

)
,

(A5)
with ∆E = Eµ − Eν .

Appendix B: Numerical implementation of the
localization method

As mentioned in Sec. IV E, the practical implementa-
tion of the localization procedure depends on a number
of parameters. In principle, one could consider all possi-
ble pairs of q.p. and rotate the particular arrangement
of all those pairs that minimizes the interaction energy.
The computational cost, however, would be formidable.
We thus limit the candidates to localization by setting
various criteria. Figure 18 shows the dependence of the
nuclear interaction energy as a function of these param-
eters.

In the reference setting that we have adopted, we
explore all possible pairs of (µ, ν) such that |∆E| =
|Eµ − Eν | ≤ 2 MeV, the localization of both q.p. is
`µ, `ν ≤ 0.75 and their occupation is Nµ, Nν ≥ 0.005.
In addition, we perform 5 successive iterations of the lo-
calization. Note that, after the first iteration, the HFB
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matrix is not diagonal anymore, hence our first criterion
cannot based on the eigenvalues Eµ, Eν anymore, but on

the diagonal elements Eµµ and Eνν of the rotated HFB
matrix.
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